Architect of Worlds – Step Seven: Stellar Classification

Architect of Worlds – Step Seven: Stellar Classification

Step Seven: Stellar Classification

This step determines the classification of each star in the system being generated, according to the Morgan-Keenan scheme most often used by astronomers. This classification scheme is not strictly necessary for the complete design of a star system, but it can provide useful flavor, and many science fiction readers and players will recognize it.

The classification for any given star is composed of two components, its spectral class and its luminosity class. Spectral class is strongly dependent on the star’s effective temperature. It uses the capital letters O, B, A, F, G, K, and M, in a sequence from the hottest (O-type) to the coolest (M-type) stars. Each letter class is also divided into ten sub-categories, numbered 0 through 9. Our own Sun, for example, is a G2-type star. Luminosity class is (for most stars) marked by a Roman numeral. Almost all stars fall into class III, class IV, or class V. Under this system, a star’s complete classification is given by spectral class, then luminosity class, with no spaces in between. Hence the Sun’s complete classification is G2V.

Brown dwarfs have also been assigned spectral classes, under an extension of the Morgan-Keenan system that uses the capital letters L, T, and Y for progressively cooler objects. These assignments are more tentative, since the study of brown dwarfs is relatively new and very cold examples are hard to observe. The spectral class Y is almost hypothetical at present, with only a few objects appearing to meet the definition.

To determine the spectral class of a star other than a white dwarf, locate the Temperature value on the Spectral Class Table closest to its effective temperature, and read across to the right to find its most likely spectral class.

Spectral Class Table
Temperature Class Temperature Class Temperature Class Temperature Class
9700 A0 5900 G0 3850 M0 1300 T0
9400 A1 5840 G1 3700 M1 1200 T1
9100 A2 5780 G2 3550 M2 1100 T2
8800 A3 5720 G3 3400 M3 1000 T3
8500 A4 5660 G4 3200 M4 950 T4
8200 A5 5600 G5 3000 M5 900 T5
8000 A6 5540 G6 2800 M6 850 T6
7800 A7 5480 G7 2650 M7 800 T7
7600 A8 5420 G8 2500 M8 750 T8
7400 A9 5360 G9 2400 M9 700 T9
7200 F0 5300 K0 2300 L0 600 or less Y0
7060 F1 5130 K1 2200 L1    
6920 F2 4960 K2 2100 L2    
6780 F3 4790 K3 2000 L3    
6640 F4 4620 K4 1900 L4    
6500 F5 4450 K5 1800 L5    
6380 F6 4330 K6 1700 L6    
6260 F7 4210 K7 1600 L7    
6140 F8 4090 K8 1500 L8    
6020 F9 3970 K9 1400 L9    

Main sequence stars have a luminosity class of V. Brown dwarfs also technically fall into luminosity class V, and we will record them as such. Subgiant stars have a luminosity class of IV, and red giant stars (whether on the red giant branch or the horizontal branch) have a luminosity class of III.

White dwarf stars are an exception to this system, with their own classification scheme. We will record all white dwarf stars as having the simple classification D.

Examples

Arcadia: Alice notes that the primary star of the Arcadia system has an effective temperature of 4950 kelvins. The closest value on the Spectral Class Table is 4960 kelvins, associated with a spectral class of K2. Since the star is on the main sequence, its complete classification is K2V.

Beta Nine: Bob notes that the two stars of the Beta Nine system have effective temperatures of 3200 K and 1420 K. It turns out that the two stars are a red dwarf of class M4V and a brown dwarf of class L9V.

Modeling Notes

A star’s spectral class depends on many features of its spectrum, and when it comes to the decimal subclasses, astronomers do not agree on their definitions. The same star is often given slightly different classification depending on the source. Once again, the system described here is a simplification designed for ease of use. The primary source was Mamajek’s compiled set of definitions, cited under Step Six.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.