Architect of Worlds – Step Eight: Stellar Orbital Parameters

Architect of Worlds – Step Eight: Stellar Orbital Parameters

This is the last step in the design sequence for star systems – once the user has finished this step, she should know how many stars are in the system, what their current properties are, and how their orbital paths are arranged.

At this point, I’ve finished the current rewrite of the “Designing Star Systems” section of the book. I don’t plan to make any further mechanical changes to that section, except to correct any errors that might pop up. The instructions and other text might get revised again before the project is complete. A PDF of the current version of this section is now available at the Sharrukin’s Archive site under the Architect of Worlds project heading.


Step Eight: Stellar Orbital Parameters

This step determines the orbital parameters of components of a multiple star system. This step may be skipped if the star system is not multiple (i.e., the primary star is the only star in the system).

Procedure

The procedure for determining the orbital parameters of a multiple star system will vary, depending on the multiplicity of the system.

The important quantities for any stellar orbit are the minimum distance, average distance, and maximum distance between the two components, and the eccentricity of their orbital path. Distances will be measured in astronomical units (AU). Eccentricity is a number between 0 and 1, which acts as a measure of how far an orbital path deviates from a perfect circle. Eccentricity of 0 means that the orbital paths follow a perfect circle, while eccentricities increasing toward 1 indicate elliptical orbital paths that are increasingly long and narrow.

Binary Star Systems

To begin, select an average distance between the two stars of the binary pair.

To determine the average distance at random, roll 3d6 on the Stellar Separation Table.

Stellar Separation Table
Roll (3d6) Separation Base Distance
3 or less Extremely Close 0.015 AU
4-5 Very Close 0.15 AU
6-8 Close 1.5 AU
9-12 Moderate 15 AU
13-15 Wide 150 AU
16 or more Very Wide 1,500 AU

To determine the exact average distance, roll d% and treat the result as a number between 0 and 1. Multiply the Base Distance by 10 raised to the power of the d% result. The result will be the average distance of the pair in AU.

Feel free to adjust the result by up to 2% in either direction. You may wish to round the result off to three significant figures.

Next, select an eccentricity for the binary pair’s orbital path. Most binary stars have orbits with moderate eccentricity, averaging around 0.4 to 0.5, but cases with much larger or smaller eccentricities are known.

To determine an eccentricity at random, roll 3d6 on the Stellar Orbital Eccentricity Table. If the binary pair is at Extremely Close separation, modify the roll by -8. If at Very Close separation, modify the roll by -6. If at Close separation, modify the roll by -4. If at Moderate separation, modify the roll by -2. Feel free to adjust the eccentricity by up to 0.05 in either direction, although eccentricity cannot be less than 0.

Stellar Orbital Eccentricity Table
Roll (3d6) Eccentricity
3 or less 0
4 0.1
5-6 0.2
7-8 0.3
9-11 0.4
12-13 0.5
14-15 0.6
16 0.7
17 0.8
18 0.9

 

Once the average distance and eccentricity have been established, the minimum distance and maximum distance can be computed. Let R be the average distance between the two stars in AU, and let E be the eccentricity of their orbital path. Then:

R_{min}=R\times\left(1-E\right)

R_{max}=R\times\left(1+E\right)

Here, Rmin is the minimum distance between the two stars, and Rmax is the maximum distance.

Trinary Star Systems

Whichever arrangement is selected, design the closely bound pair first as if it were a binary star system (see above). This binary pair is unlikely to have Wide separation, and will almost never have Very Wide separation. Select an average distance for the pair accordingly. If selecting an average distance at random, modify the 3d6 roll by -3. Select an orbital eccentricity normally, and compute the minimum and maximum distance for the binary pair.

Once the binary pair has been designed, determine the orbital path for the pair (considered as a unit) and the single component of the star system. The minimum distance for the pair and single components must be at least three times the maximum distance for the binary pair, otherwise the configuration will not be stable over long periods of time.

If selecting an average distance for the pair and single component at random, use the Stellar Separation Table normally. If the result indicates a separation in the same category as the binary pair (or a lower one), then set the separation to the next higher category. For example, if the binary pair is at Close separation, and the random roll produces Extremely Close, Very Close, or Close separation for the pair and single component, then set the separation for the pair and single component at Moderate and proceed.

Select an orbital eccentricity for the pair and single component normally, then compute the minimum distance and maximum distance. If the minimum distance for the pair and single component is not at least three times the maximum distance for the binary pair, increase the average distance for the pair and single component to fit the restriction.

Quaternary Star Systems

As in a trinary star system, design the closely bound pairs first. Each binary pair is unlikely to have Wide separation, and will almost never have Very Wide or Distant separation. Select an average distance for each pair accordingly. If selecting an average distance at random, modify the 3d6 roll by -3. Select an orbital eccentricity, and compute the minimum distance and maximum distance, for each binary pair normally.

Once the binary pairs have been designed, determine the orbital path for the two pairs around each other. The minimum distance for the two pairs must be at least three times the maximum distance for either binary pair, otherwise the configuration will not be stable.

If selecting an average distance for the two pairs at random, use the Stellar Separation Table normally. If either result indicates a separation in the same category as either binary pair (or a lower one), then set the separation to the next higher category. For example, if the two binary pairs are at Close and Moderate separation, and the random roll produces Moderate or lower separation for the two pairs, then set the separation for the two pairs at Wide and proceed.

Select an orbital eccentricity for the two pairs normally, then compute the minimum distance and maximum distance. If the minimum distance for the two pairs is not at least three times the maximum distance for both binary pairs, increase the average distance for the two pairs to fit the restriction.

Stellar Orbital Periods

Each binary pair in a multiple star system will circle in its own orbital period. The pair and singleton of a trinary system will also orbit around each other with a specific period (probably much longer). Likewise, the two pairs of a quaternary system will orbit around each other with a specific period.

Let R be the average distance between two components of the system in AU, and let M be the total mass in solar masses of all stars in both components. Then:

P=\sqrt{\frac{R^3}{M}}

Here, P is the orbital period for the components, measured in years. Multiply by 365.26 to get the orbital period in days.

Special Case: Close Binary Pairs

Most binary pairs are detached binaries. In such cases, the two stars orbit at a great enough distance that they do not physically interact with each other, and evolve independently. However, if two stars orbit very closely, it’s possible for one of them to fill its Roche lobe, the region in which its own gravitation dominates. A star which is larger than its own Roche lobe will tend to lose mass to its partner, giving rise to a semi-detached binary. More extreme cases give rise to contact binaries, in which both stars have filled their Roche lobes and are freely exchanging mass in a common gaseous envelope.

This situation is only possible for two main-sequence stars that have Extremely Close separation, or in cases where a subgiant or red giant star has a companion at Very Close or Close separation. If a binary pair being considered does not fit these criteria, there is no need to apply the following test.

For each star in the pair, approximate the radius of its Roche lobe as follows. Let D be the minimum distance between the two stars in AU, let M be the mass of the star being checked in solar masses, and let be the mass of the other star in the pair. Then:

R=D\times(0.38+0.2\log_{10}{\frac{M}{M^\prime}})

Here, R is the radius of the star’s Roche lobe at the point of closest approach to its binary companion, measured in AU. Compare this to the radius of the star itself, as computed earlier. If the star is larger than its Roche lobe, then the pair is at least a semi-detached binary. If both stars in the pair are larger than their Roche lobes, then the pair is a contact binary.

The evolution of such close binary pairs is much more complicated than that of a singleton star or a detached binary. Mass will transfer from one star to the other, altering their orbital path and period, profoundly affecting the evolution of both. Predicting how such a pair will evolve goes well beyond the (relatively simple) models applied throughout this book. We suggest treating such binary pairs as simple astronomical curiosities, special cases on the galactic map that are extremely unlikely to give rise to native life or invite outside settlement. Fortunately, these cases are quite rare except among the very young, hot, massive stars found in OB associations.

One specific case that is of interest involves a semi-detached binary in which one star is a white dwarf. Hydrogen plasma will be stripped away from the other star’s outer layers, falling onto the surface of the white dwarf. Once enough hydrogen accumulates, fusion ignition takes place, triggering a massive explosion and ejecting much of the accumulated material into space. For a brief period, the white dwarf may shine with hundreds or even thousands of times the luminosity of the Sun. This is the famous phenomenon known as a nova.

Most novae are believed to be recurrent, flaring up again and again so long as the white dwarf continues to gather matter from its companion. However, for most novae the period of recurrence is very long – hundreds or thousands of years – so nova events from any given white dwarf in a close binary pair will be very rare. Astronomers estimate that a few dozen novae occur each year in our Galaxy as a whole.

Examples

Arcadia: Alice has already decided that the Arcadia star system has only the primary star, so she skips this step entirely.

Beta Nine: Bob knows that the Beta Nine system is a double star. Proceeding entirely at random, he rolls 3d6 on the Stellar Separation Table and gets a result of 7. The two components of the system are at Close separation. He takes a Base Distance of 1.5 AU and rolls d% for a result of 22. The average distance between the two stars in the system is:

1.5\times{10}^{0.22}\approx2.489

Bob rounds this off a bit and accepts an average distance of exactly 2.50 AU. He rolls 3d6 on the Stellar Orbital Eccentricity Table, subtracts 4 from the result since the stars are at Close separation, and gets a final total of 5. The orbital path of the two stars has a moderate eccentricity of 0.2. Bob computes that the minimum distance between the two stars will be 2.0 AU, and the maximum distance will be 3.0 AU.

Bob can now compute the orbital period of the two stars:

P=\sqrt{\frac{{2.50}^3}{(0.18+0.06)}}\approx8.07

The two stars in the Beta Nine system circle one another with a period of a little more than eight years.

The two components of the Beta Nine system form a binary pair, with a minimum separation of 2.0 AU. There is no possibility of the pair forming anything but a detached binary, so Bob does not bother to estimate the size of either component’s Roche lobe.

Modeling Notes

The paper by Duchêne and Kraus cited earlier describes the best available models for the distribution of separation in binary pairs. The period of a binary star appears to show a log-normal distribution with known mode and standard deviation. Generating a log-normal distribution with dice is a challenge without requiring exponentiation at some point, hence the unusual procedure for estimating separation used here.

3 thoughts on “Architect of Worlds – Step Eight: Stellar Orbital Parameters

  1. I’m so happy to see this project is still moving forward! I’ve got the original random generator in excel from when you originally sought playtesters, and if you like, I’ll update it and see how this handles over a bunch of trials. Is there a change log anywhere for the mechanics, by chance?

    1. Good to see you!

      Sure, if you would like to tinker with implementing the sequence in Excel, be my guest. I’m actually thinking I might try to put together a C application for it as I finish reworking sections.

      I haven’t been keeping a change log, unfortunately, but I think it’s safe to say that every step is getting at least minor revisions. Not to mention that the order of steps itself has been changed. You’d probably be better off just zero-basing the whole thing.

      1. An executable for this system would be fantastic since it is pretty involved. I’ll see about rebuilding my system generator in the meantime and gladly provide feedback I find. I need to populate a region of space, so this is a good chance to tinker with that.

        As you post more system aspects, I will continue to use your system and give you feedback. I hope that will help!

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.