Architect of Worlds – Step Nine: Structure of Protoplanetary Disk

Architect of Worlds – Step Nine: Structure of Protoplanetary Disk

Over the next few days, I’ll be posting the current draft of the next section of the Architect of Worlds project. Here, now that we’ve designed and arranged the star(s) of a given system, we can give each star its own family of attendant planets, determining their basic physical and dynamic properties along the way.


Step Nine: Structure of Protoplanetary Disk

In this step, we determine the most important properties of the star’s protoplanetary disk, which will in turn govern the size and placement of the planets that form. These properties include the location of the disk’s effective inner and outer edges, the location of the “snow line,” and the relative mass and density of the disk.

Procedure

Select or compute each of the following parameters, and record the results for later use.

Disk Inner Edge

Astronomers are not clear where the inner edge of a protoplanetary disk will normally be located. In fact, it’s possible that the disk has no inner edge, since material continues to fall onto the star’s surface throughout the period of planetary formation. Planets which migrate strongly inward do seem to stop some distance away from the primary star, but their eventual orbital period may be quite short, on the order of a few days.

Select a radius for the inner edge of the protoplanetary disk. To select a distance at random, roll 2d6:

R=(2d6)\times0.003\times\sqrt[3]{M}

Here, R is the radius of the disk inner edge in AU, and M is the star’s mass in solar masses. Round off to two significant figures.

Snow Line

The “snow line” represents a distance from the star where volatiles, especially water, can freeze and remain solid within the protoplanetary disk. Inside the snow line, any solid matter within the disk will tend to be dry: dust leading up to masses of stone. Outside the snow line, water and other volatiles will be present in the form of ices. Thus, crossing the snow line outward, an observer would see a sharp rise in the amount of solid material available for planetary formation. The most probable location for the formation of the system’s largest planet is at the snow line.

Determine the radius of the snow line as follows. If L0 is the initial luminosity of the star in solar units, then:

R=4.2\times\sqrt{L_0}

Here, R is the radius of the snow line in AU. Round off to two significant figures.

Slow-Accretion Line

On the outer edges of a planetary system in formation, the density of available material is low and the orbital period of that material is long. Protoplanets forming in this region may have difficulty sweeping up all the material that’s theoretically available. Most of that material is likely to remain free when the period of planetary formation ends, to be swept out into interstellar space. We model this effect by establishing a “slow-accretion line,” beyond which the formation of planets is unlikely.

Determine the radius of the slow-accretion line as follows. If M is the mass of the star in solar masses, then:

R=15\times\sqrt[3]{M}

Here, R is the radius of the slow-accretion line in AU. Round off to two significant figures.

Disk Density

Mass available for the formation of planets will be limited, since the bulk of the protostellar nebula will have ended up in the star rather than in the protoplanetary disk. The mass in the disk is dominated by gas, primarily hydrogen and helium. Other constituents of the disk include frozen volatiles (outside the snow line) and dust.

For astronomers, measuring the mass of a protoplanetary disk is rather difficult. Most estimates indicate that a star’s protoplanetary disk will have about 1% of the star’s mass, although this can vary widely. For this design sequence, we will need to determine the disk mass factor. This is a multiplicative factor; for example, a star with mass equal to the Sun and a disk mass factor of 1.0 will have a protoplanetary disk roughly as massive as the Sun’s.

Select a disk mass factor between 0.1 and 1.0, with most protoplanetary disks having a density factor close to 1. To select a disk mass factor at random, roll 3d6 on the Disk Mass Factor Table. Feel free to select a value between two results on the table. Each component in a multiple star system can have its own disk mass factor.

Roll (3d6) Disk Mass Factor
3 0.1
4 0.13
5 0.18
6 0.25
7 0.36
8 0.5
9 0.7
10-11 1.0
12 1.4
13 2.0
14 2.8
15 4.0
16 5.6
17 7.5
18 10.0

Selecting for an Earthlike world: The ideal disk density to produce an Earthlike world depends on many factors. To maximize the probability of an Earthlike world, multiply the selected disk mass factor by the star system’s metallicity; the result should be close to 1.

Planetary Mass Budget

The disk mass factor will determine how much material is available for the formation of planets. We will measure this material as a planetary mass budget, deducting from this budget as planets are placed. The planetary mass budget is an estimate of the metals that will end up in planets, where “metals” is used in the astronomical sense (that is, all elements heavier than helium).

To determine the planetary mass budget, let M be the mass of the star in solar masses, let K be the star’s metallicity, and let D be the disk mass factor determined above. Then:

B=80\times M\times K\times D

Here, B is the planetary mass budget, measured in Earth-masses. Round off to two significant figures.

Special Case: Forbidden Zone

If the star under development is a member of a multiple star system, it is possible that one of its companion stars will approach so closely as to disrupt part of the protoplanetary disk. This will give rise to a forbidden zone, a span of orbital radii in which no stable orbit is possible. As the planetary system is designed, planets will not form within the forbidden zone, and any planet that migrates into the zone will be lost.

To check for the existence of a forbidden zone, compute one-third the minimum distance for the nearest companion star. This will be the radius of the inner edge of any potential forbidden zone.

If a forbidden zone exists, and its inner edge is inside the slow-accretion line, then some of the disk material that might otherwise have formed planets has been stripped away by the companion star’s influence. Adjust the planetary mass budget as follows. If B0 is the planetary mass budget before accounting for the forbidden zone, RF is the radius of the inner edge of the forbidden zone, and RA is the radius of the slow-accretion line, then:

B=B_0\times\sqrt{\frac{R_F}{R_A}}

Here, B is the adjusted planetary mass budget. Round off to two significant figures.

Examples

Arcadia: Alice is working with a single star with a mass of 0.82 solar masses, initial luminosity of 0.28 solar units, and metallicity of 0.63. She decides that the disk inner edge will be at about 0.025 AU. She computes that the snow line will be at about 2.2 AU and the slow-accretion line will be at about 14.0 AU.

Alice makes note of the star’s metallicity of 0.63, and selects a disk mass factor of 2.0. Multiplying the two together yields a result of 1.26, which is reasonably close to 1 and seems likely to yield an Earthlike world at the end of the design process. The planetary mass budget will be:

80\times0.82\times0.63\times2.0\approx83

Since the primary star is a singleton, there will be no forbidden zone, so Alice has all the information she needs to complete this step of the design process.

Beta Nine: Bob is working on the primary star of the Beta Nine system, a red dwarf with a mass of 0.18 solar masses, luminosity of 0.0045 solar units, and metallicity of 2.5. He rolls 2d6 for a result of 8, and determines that the disk inner edge will be at about 0.014 AU. He computes that the snow line will be at about 0.28 AU, and the slow-accretion line will be at about 8.5 AU.

Bob rolls 3d6 on the Disk Mass Factor Table, and gets a roll of 8. This suggests a disk mass factor of 0.5. Bob accepts this result, noticing that the product of 0.5 and the star’s metallicity of 2.5 is 1.25, not far from the value most likely to yield an Earthlike world. The initial planetary mass budget will be about 18 Earth-masses.

Beta Nine is a binary star system, with a brown dwarf companion in a close orbit. The minimum separation of the two stars is 2.0 AU. One-third of this is 0.67 AU, well within the slow-accretion line, but not within the snow line. There is a forbidden zone for this star, with its inner edge at 0.67 AU. The existence of the forbidden zone will (dramatically) reduce the available planetary mass budget:

18\times\sqrt{\frac{0.67}{8.5}}\approx5.1

The Beta Nine primary will have fewer planets, since the brown dwarf companion has stripped away most of the material needed to form them!

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.