Architect of Worlds – Step Twenty: Determine Prevalence of Water

Architect of Worlds – Step Twenty: Determine Prevalence of Water

Water is one of the most common substances in the universe. Its special properties will lead it to have a profound effect on the surface conditions of any world, from its initial geological development, to its eventual climate, and finally to the evolution of life. Some worlds may never have much water, others will tend to lose whatever water they begin with, and still others will retain massive amounts of water throughout their lives.

In this step, we will estimate how much water can be found on a given world. The possible cases will be sorted into five categories: Trace, Minimal, Moderate, Extensive, and Massive. These categories are defined as follows.

  • Trace: No liquid water or water ice remains on the vast majority of the surface. If there is a substantial atmosphere, it may carry traces of water vapor. Small pockets of water ice may remain on the surface, in permanently shadowed craters or valleys, or on the night face of a world tide-locked to its primary star. Small deposits of water may be locked in hydrated minerals deep below the surface. Examples: Mercury, Venus, Earth’s moon, or Io.
  • Minimal: Liquid water is vanishingly rare on the surface, but large deposits of water ice may exist in the form of polar caps, in sheltered craters or valleys, or on the night face of a tide-locked world. Substantial aquifers or ice deposits may exist close beneath the surface. Hydrated minerals can be found in the world’s interior. Examples: Mars.
  • Moderate: A substantial portion of the world’s surface, but not a majority, is covered by some combination of liquid-water seas and water ice, depending on local temperature. The liquid-water oceans or ice deposits are up to a few kilometers in depth. Far away from the oceans or ice deposits, water becomes vanishingly rare. Hydrated minerals are common in the world’s interior. Examples: Mars a few billion years ago.
  • Extensive: Most of the world’s surface is covered by some combination of liquid-water oceans and water ice, up to several kilometers in depth. Water is common in most areas of the surface, even away from the oceans or ice deposits. Hydrated minerals are plentiful far into the world’s interior. Examples: Earth, Venus a few billion years ago.
  • Massive: The entire surface is covered by some combination of liquid-water oceans and water ice, up to hundreds of kilometers deep. Deeper layers of this world-ocean may be composed of higher-level crystalline forms of water (Ice II and up). Hydrated minerals are plentiful far into the world’s interior. Examples: Europa, Ganymede, Callisto, Titan, some “super-Earth” exoplanets.

The amount of water available on a given world will depend upon its M-number (Step Nineteen), its blackbody temperature (Step Nineteen), its location with respect to the protoplanetary disk (Step Nine), and (in some cases) the arrangement of any gas giant planets elsewhere in the planetary system (Steps Ten and Eleven).

Procedure

Begin by noting which of the following three cases the world being developed falls under, based on its M-number.

First Case: M-number is 2 or less

In this case, the world’s prevalence of water is automatically Massive.

Second Case: M-number is between 3 and 28

In this case, determine whether the world is outside or inside the protoplanetary nebula’s snow line, as determined in Step Nine. If the world’s orbital radius (or that of its planet, in the case of a major satellite) is exactly on the snow line, assume that it is outside.

If the world in this case is outside the snow line, then its prevalence of water is automatically Massive.

If the world in this case is inside the snow line, then roll 3d6, modified as follows:

  • Subtract the world’s M-number.
  • Add +6 if there exists a dominant gas giant in the planetary system, it experienced a Grand Tack event, and it is currently outside the protoplanetary nebula’s snow line.
  • Add +3 if any gas giants in the planetary system are currently outside the protoplanetary nebula’s slow-accretion line.

Take the modified 3d6 roll and refer to the Initial Water Prevalence table:

Initial Water Prevalence Table
Modified Roll (3d6)Prevalence
-5 or lessTrace
-4 to 3Minimal
4 to 11Moderate
12 to 19Extensive
20 or higherMassive

If the result on the table is Moderate or higher, and the world’s blackbody temperature is 300 K or greater, then the presence of water vapor in the world’s atmosphere has given rise to a runaway greenhouse event. Make a note of this event for later steps in the design sequence and reduce the prevalence of water to Trace.

Otherwise (the world’s blackbody temperature is less than 300 K) the prevalence of water is as indicated on the table.

Third Case: M-number is 29 or greater

In this case, determine whether any of the three following cases is true:

  • The world’s blackbody temperature is 125 K or greater.
  • The world is the major satellite of a Large gas giant, and its orbital radius is no more than 8 times the radius of the gas giant.
  • The world is the major satellite of a Very Large gas giant, and its orbital radius is no more than 12 times the radius of the gas giant.

If any of these three cases are true, then the world’s prevalence of water is Trace. Otherwise, its prevalence of water is Massive.

Examples

Both Arcadia IV and Arcadia V fall into the second case. The Arcadia system has a dominant gas giant, which underwent a Grand Tack and ended up outside the snow line. The outermost gas giant (at 9.50 AU) is not outside the system’s slow-accretion line (at 14.0 AU). For both planets, therefore, she will roll 3d6, minus the planet’s M-number, plus 6. Her rolls are 13 for Arcadia IV and 10 for Arcadia V, so Arcadia IV has Extensive water while Arcadia V has only Moderate water.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.